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ABSTRACT  

There is a growing demand for effective detection of hazardous materials at safe distances in real-time with a high 
degree of autonomy.  In an effort to address this need, ChemImage Sensor Systems (CISS) in collaboration with the 
Carnegie Mellon Robotics Institute has developed a novel, adaptable, short-wave infrared (SWIR) hyperspectral imaging 
system for real-time standoff detection of hazardous materials (e.g., explosives, narcotics, etc.).  At the heart of this 
system is the Conformal Filter (CF), which is a liquid crystal (LC)-based tunable filter that transmits multi-band 
waveforms.  Building on concepts of multivariate optical computing, the CF is tuned electro-optically and dynamically 
to mimic the functionality of a discriminant vector for classification.  The resulting integrated detector response 
approximates the detection response of conventional hyperspectral imaging with only two discrete measurements instead 
of hundreds to thousands.  Real-time detection is achieved by operating two CFs in tandem within a dual polarization 
(DP) system, which exploits the polarization sensitivity of the LC filters and allows for simultaneous acquisition of the 
compressed hyperspectral imagery.  This improved sampling rate coupled with advanced object recognition, semantic 
scene understanding, and image reconstruction algorithms enables real-time (i.e., >10 detection fps), on-the-move 
detection of targets. 

This paper will discuss the development, characterization, and test results of the first generation SWIR DP-CF imaging 
sensor, with a focus on its application to explosives and narcotic threat detection. 

Keywords: hyperspectral imaging (HSI), standoff, detection, explosives, drugs, chemical warfare agents (CWAs), 
compressive sensing, conformal filter, shortwave infrared (SWIR) 

 

1. INTRODUCTION  

1.1 Problem and Opportunity 

In today’s society, there is a growing need for real-time, adaptable, safe, autonomous, standoff detection of chemical, 
explosive and illicit drug threats to address the resurgence and proliferation of worldwide terroristic activity.  
Organizations like the Department of Homeland Security (DHS) and the Drug Enforcement Agency (DEA) encounter 
daily battles against terroristic threats and illegal narcotic smuggling that would benefit from such capabilities.  
Additionally, state and local law enforcement agencies demand technologies to aid in detecting and classifying unknown 
materials in hazmat situations as well as crime scene investigations.  Security teams responsible for safeguarding large 
public venues, such as stadiums during popular sporting events and politic events, also have a need for sensing 
capabilities to detect a wide variety of threat materials at safe standoff distances in real-time.  Therefore, the demand for 
real-time, autonomous standoff detection of threats is ever present and growing for numerous end users. 

Hyperspectral imaging (HSI) sensors have been used to detect and identify a variety of targets in the presence of 
complex backgrounds at a standoff distance.  Unfortunately, current generation sensors are typically large, costly to 
field, lack adaptability to changing threats, do not usually operate in real time and have limited sensitivity and 
specificity.  Evolving the next generation of HSI technology to address current generation sensor limitations will attend 
to growing detection needs of numerous local, state and federal law enforcement agencies. 
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Over the past decade, ChemImage Sensor Systems (CISS) has been developing, validating and fielding HSI sensors 
capable of standoff, near real-time detection of chemical, explosive and illicit drug threats in complex, real world 
environments.  One of CISS’s most recent advancements is a novel, real-time (>10 detection fps), adaptable, 
compressive sensing SWIR-HSI sensor based on dual polarization conformal filter (DP-CF) imaging technology.1-4 DP-
CF will be capable of being configured in a handheld or vehicle-mounted sensor that provides stationary or on-the-move 
standoff detection of threat residues on either moving or motionless surfaces, including people and vehicles.  DP-CF 
may prove ideal for route clearance or combat patrols helping soldiers to quickly detect if there is danger ahead. DP-CF 
is anticipated to have an impact upon maintaining military forces’ competitive advantage, especially when fully matured 
into a lightweight, compact, handheld or wearable system configuration for the detection of critical targets in the 
presence of complex or interfering backgrounds in an automated fashion and in real-time. 

In addition to defense and law enforcement applications, DP-CF is anticipated to support commercial sensing application 
needs such as quality assessment of pharmaceuticals, food analysis, precision agriculture, textiles analysis, evaluation of 
plastics, semiconductor defect inspection, illicit drug screening in mail and forensic trace evidence examination. 
 

1.2 Dual Polarization Conformal Filter (DP-CF) Imaging 

Unlike traditional liquid crystal tunable filters (LCTFs), which are engineered to transmit a single optical passband at a 
time, the CF is a multi-passband spectrometer based on CISS’s Multi-Conjugate Filter (MCF).5  CFs can conform, on 
demand, to discriminate target from complex backgrounds in real-time.  In operation, the CF exploits concepts of 
compressive sensing, involving intelligent (i.e. sparse) under-sampling to reduce data bandwidth, while yielding 
information-rich results by utilizing redundancy in information across the sampled signal.6  The CF also uses concepts of 
Multivariate Optical Computing (MOC), which encodes a chemometric regression or discriminant vector into the 
transmission function of an optical filter and removes the need for multivariate analysis post processing of the digital 
image.7  Similar to traditional MOC devices, called multivariate optical elements (MOE), a chemical prediction is 
obtained optically by incorporating the optical filter (i.e. the CF) that contains the embedded transmittance profile of the 
prediction vector into the imaging system. However, unlike the transmission functions of MOEs, which are fixed at the 
time of fabrication, CFs are tunable and therefore reconfigurable for a variety of targets and backgrounds. 

The CF optical computation is performed by convolving the transmission function of the CF with the incident radiation 
reflected from the target and integrating the result onto a broadband optical imaging detector. The CF approximates the 
multivariate response of an HSI system, which improves discrimination performance compared to a univariate response, 
while only requiring two CF tuning states.  Chemometric prediction vectors contain both positive and negative 
components (see Figure 1, red trace). One approach to achieving this characteristic with the all-optical analog is to use 
two filter transmission functions, T1 and T2, to represent the positive and negative portions of the vector, respectively 
(Figure 1, blue solid and dashed traces). Subtracting T2 from T1 produces the detection image, where each pixel 
represents a projection onto the optical prediction vector. To account for variations in lighting intensity, the difference in 
T1 and T2 is normalized to its sum (T1+T2). In practice, both T1 and T2 are determined for a single material of interest, 
but a LC-based CF can be also be tuned for the T1 and T2 characteristic of other materials of interest. Therefore, it is 
capable of material agile operation and can be readily adapted on demand via software control to align with mission 
requirements. 

DP-CF incorporates two CFs and is shown conceptually in Figure 1. In this approach, light reflected from a surface of 
interest is directed to a polarizing beamsplitting cube. Half of the light passes through to a CF orientated parallel to the 
polarized light. This CF is tuned to the T1 conformation for the material of interest. The other half of the light is directed 
to a second CF, which is oriented perpendicular to the polarized light and tuned to the T2 conformation for the material 
of interest. The two polarized light channels are recombined with a second beamsplitter and are directed to the FPA. 
Each conformation occupies half of the FPA and, with the use of sophisticated algorithms, the image is processed to 
achieve detection of a material of interest. Employing this DP approach allows both filter conformations (T1 and T2) to 
be acquired simultaneously, thus requiring only one camera readout to achieve a detection and enabling detections at the 
frame rate of the camera. 

Proc. of SPIE Vol. 10657  106570U-2

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 5/18/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 

 

 
Figure 1. Dual-Polarization Conformal Filter (DP-CF) Imaging Concept. DP-CF produces optimized spectral passbands on demand, 
which can readily be re-configured, to discriminate targets from complex backgrounds in real-time. 

 
1.3 Multivariate Sensor for Mobile Platforms Program 

To address limitations of currently fielded HSI systems, CISS  has partnered with Carnegie Mellon University’s School 
of Computer Science (Robotics Institute) in a prototype real-time DP-CF based HSI sensor development effort entitled, 
“Multivariate Sensor for Mobile Platforms”.  The primary objectives of this self-funded effort were to explore the 
capabilities and limitations of the DP-CF technology at a fundamental level and assess potential deployment across 
strategic robotics applications.  We report here a summary overview of results from our internal research and 
development effort.  

2. METHODOLOGY  

2.1 Prototype Hardware 

In order to validate the DP-CF imaging approach, CISS designed and built a prototype DP-CF sensor.  Figure 2(A) 
shows a labeled diagram of the internal sensor head components and Figure 2(B) shows a photograph of the final 
prototype mounted on a tripod equipped with a pan/tilt unit. In operation, solar radiation or artificial lighting illuminates 
targets of interest.  Photons are selectively absorbed and/or reflected depending on the chemical makeup of the materials 
present in the field of view. 

In traditional sequential tunable filter-based HSI, a full hypercube of SWIR hyperspectral images, or a smaller set of 
SWIR multispectral images, are collected via a liquid crystal-based imaging spectrometer to an uncooled FPA detector.  
With a full hypercube each pixel in the image has a fully resolved spectrum associated with it; therefore multiple 
components in the field of view will be distinguishable based on the varying absorption that the materials exhibit at the 
individual wavelengths.  The spatially-resolved SWIR spectral signatures are compared to a SWIR-spectral library using 
pattern-matching algorithms.  The individual components of interest are uniquely identified based on the absorbance 
properties.  The same technology may be operated in a near real-time mode by collecting a smaller set of SWIR 

T1 and T2 Captured Simultaneously

DP Detection Image

Wavelength (nm)

%
 T

ra
ns

m
is

si
on

Conformal Measurement (T1)

Wavelength (nm)

%
 T

ra
ns

m
is

si
on

Conformal Measurement (T2)

Wavelength (nm)

PL
S 

R
eg

re
ss

io
n+

-

PLS (or Optical) 
Regression O

ptical R
egression (T1 –

T2)

–

=

T2

T1

Detection

T2

T1

Explosive Residue

Illumination

Reflected
Light

DP CF

Proc. of SPIE Vol. 10657  106570U-3

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 5/18/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



RGB

Electronics ...

Thermal Management

apture Optics 13S -1

SWI R
F PA

Focusing
Optics

BS-2

B.

multispectral images (less than 10 images) and identifying components of interest through model building or image 
processing on this subset of spectral bands.  However, true real-time (i.e., >10 detection fps) cannot be achieved using 
the traditional sequential tunable filter-based HSI approach. 

DP-CF technology provides a means for true real-time HSI imaging.  The DP-CF imaging spectrometer unit incorporates 
two CFs. The CFs are derived from ChemImage’s multi-conjugate filter (MCF)5 and utilize a subset of the MCF filter 
stages. The details of the design process (i.e. selection of the appropriate filter stages) and fabrication of the SWIR CF 
has been discussed previously.1 The CFs used in the experiments described below consist of two MCF stages (of six 
possible), in which a single voltage controls the transmission function of each stage and the convolution of the two stage 
profiles determines the final CF transmission function. 

The DP-CF spectrometer unit (Figure 2(A) splits the light captured by the front end optics into opposite polarizations via 
a polarizing beamsplitter. Each polarization of light is directed through a different conformal filter. The filtered 
polarizations of light are then recombined by a second polarizing beamsplitter and each is focused onto one half of the 
FPA. A set of polarizers are also attached to the front of the FPA in order to reject any light coming from the adjacent 
image in order to minimize polarization crosstalk.  The DP-CF prototype provides spatial sampling of approximately 5 
mm/pixel at a 10m standoff distance correpsonding to a 16° horizontal angular field-of-view (FOV) and a 10° vertical 
angular FOV after taking into account the coregistered T1 and T2 conformations imaged onto adjacent portions of the 
FPA. 

Figure 2. Solid model schematic of the internal sensor head components (A) and digital photograph (B) of the DP-CF 
prototype sensor. 

2.2 Prototype Software 

Two software packages were used to carry out the testing and subsequent data analysis. CISS’s Conformal Optimization 
software was used to control the CFs and InGaAs FPA as well as to produce Receiver-Operator Characteristic (ROC) 
curves. The Conformal Optimization software provides a means to optimize the liquid crystal voltage selection in order 
to maximize the distinction between target and background pixels based on area under the ROC curve (AUROC) values 
as well as to co-register and flatfield the T1 and T2 portions of the DP-CF images.  CISS’s Spectral Kitchen™ software 
was used to load optimized voltage settings from the Conformal Optimization program and to set and apply detection 
threshold parameters to enable real-time, autonomous detection imagery. 

2.3 Detection Image Formation 

Chemical-based detection images are generated from score images derived from the pixel intensities measured at a 
particular CF tuning state.  Here, score images are calculated as the difference of two CF tuning state images, T1 and T2, 
normalized to their sum: T1-T2/T1+T2. The difference of the pair mimics the result produced by taking the inner 
product of a target spectrum and the positive (T1) and negative (T2) lobes of a discriminant vector. Division by the sum 
of T1 and T2 acts as a normalization factor to account variations in light intensity.  T1 and T2 images are collected 
simultaneously on the same FPA (at different pixel locations) with two different CFs, one tuned to T1 voltages and the 
other to T2 voltages. 
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Prior to score image calculations, the raw T1 and T2 images are corrected for dark current noise and uneven illumination 
of the FPA, which may result from uneven illumination of the FOV as well as a spatially non-uniform response of the 
lenses, filters, and other optics.  A single dark current image is collected with no light entering the sensor and is 
subtracted from all raw images. The flatfield correction images are collected of a 99% reflectance standard with a 
specific set of voltages applied to the CF. Each dark current corrected data image is flatfield corrected via division.  The 
dark current, flatfielded FPA image is then cut into two vertical images and co-registered.  

The final step in detection image formation is to process the DP-CF generated score imagery using Spectral Kitchen’s 
Shortwave Infrared Automated Detection Algorithm (SWIR-ADA).  SWIR-ADA is a real-time autonomous detection 
algorithm that is designed to detect and display the location of residue to bulk amounts of threat materials within a scene 
by false-colorizing pixels that spectrally match target materials for which the sensor has been trained.  The algorithm 
process applies spatial, spectral and temporal processes to optimize detections performance. 

2.4 Samples 

CONOPs-specific target materials were selected to test the performance of the prototype DP-CF sensor. These materials 
included an illicit drug simulant (acetaminophen or APAP), two explosive precursors (HME-1 and HME-2), and one 
chemical near-neighbor to HME-2. Threat simulant material amounts were approximately 1 g for range-dependent 
measurements. Limit-of-detection (LOD) samples were prepared for HME-1 using a spray deposition technique on white 
ACT car coupons. LOD sample concentrations varied between 0 μg/cm2 (control) and 2,000 μg/cm2.  Moving target 
example deposition concentrations varied from μg/cm2 to mg/cm2 quantities for residue depositions and g/cm2 quantities 
for bulk material studies. 

2.5 Testing and Data Analyses 

One objective of our testing was to demonstrate target analyte (material or class) detection in the presence of interfering 
species and background materials in both controlled indoor settings and less controlled outdoor (i.e., “real-world”) 
settings.  In addition to the experiments and results discussed below, the sensor was evaluated for basic optical 
performance (i.e., spatial sampling, FOV and spatial resolution), noise performance (noise equivalent absorbance (NEA) 
and stray light), impact of other variables on detection (i.e., location of target in the scene, lighting levels and integration 
time optimization). 

Detection Performance vs Range (Pd, Pfa, Td, Latency) 

Detection performance versus range studies were conducted to understand the impact of range on probability of 
detection (Pd), probability of false alarms (Pfa) and time to detect.  The DP-CF sensor was initially trained to detect 
HME-1 using CISS’s Conformal Training software.  Detection imagery was then captured of approximately 1mm thick 
target and confusant samples sandwiched between 1” x 3” glass microscope slides taped to a dry erase board covered 
with 97% reflective paper using the prototype DP-CF sensor positioned at 1m, 5m and 10m ranges to target, respectfully.  
The 97% reflective paper was used to enable light level assessments from the perspective of the sensor at the various 
standoff distances.  Data was processed to assess Pd, Pfa, Td, score value and image signal-to-noise ratios (ISNR) as a 
function of range.  Detection latency was accessed using a stopwatch to measure the difference in time between an 
action and the subsequent detection response as displayed to the user on the computer screen.   

Sensitivity (LOD) 

Limit-of-detection (LOD) studies were conducted to understand the analytical limits of detection associated with the DP-
CF sensor.  Nine (9) LOD coupons containing HME-1 were imaged sequentially over three replicate measurements at a 
standoff distance of 1.5m.  Score image pixel-based AUROC values were computed for each deposition relative to blank 
coupon from which a plot of AUROC versus concentration was generated.  The LOD was then computed by fitting the 
linear portion of the plot.  The LOD was computed as the concentration corresponding to two standard deviations of the 
mean blank sample AUROC.  
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Selectivity studies were conducted to assess the discriminating power that conformal sensing provides for a wider range 
of materials.  DP-CF images were captured from a selection of 103 white powders by iterating two voltages from 1.5V 
to 4.5V at a step size of 0.1V.  This resulted in 961 images associated with the T1 CF channel and 961 corresponding 
images associated with the T2 CF channel.  The data was aligned and white balanced.  “Signature images” associated 
with all 103 samples were generated resulting from the normalized response for each material for each voltage setting. 
Support vector machine (SVM)8 and k-nearest neighbor (KNN)9 data analyses were applied to the “signature image” 
data using a leave-one-out testing methodology to assess the overall accuracy in discriminating edible from non-edible 
powders.   

“Real-World” Real-Time Moving Target Detection Examples 

Two “real-world” examples were used to demonstrate the feasibility of DP-CF sensing in such settings.  In the first 
example, HME-1 simulant material was applied to both a stationary car door and a back pack being carried through the 
sensor FOV by a human subject at a ~10m sensor to target range.  Detection image movies were generated in real-time 
(~15 detection frames/sec).  In the second example, a small plastic baggie containing a bulk amount of HME-1 was 
attached to a drone and flown in random directions at a nominal 30 m sensor to target range.  Again, detection image 
movies were generated in real-time as the drone was moving about the scene. 

3. RESULTS

3.1 Detection Performance vs Range (Pd, Pfa, Td, Latency) 

Figure 3 shows representative detection performance results as a function of range.  Detection images were generated at 
1m, 5m and 10m standoff after training the DP-CF sensor to detect HME-1.  Detections were obtained for the HME-1 
sample at each distance without any false alarms.  Figure 3A and 3B show detection images at 1m and 5m, respectively. 
Pixels with red false coloring provide an indication of where in the image HME-1 is detected.  With this target set at 
these sample concentrations, Pd=100% and Pfa=0% at each distance (Figure 3C).  The impact of score values associated 
with HME-1 and the background pixels versus distance is shown in Figure 3D.  As range increases, the score values for 
both target and background decrease, but at a faster rate for the target score values.  Figure 3E shows ISNR plotted 
against standoff distance.  Over these three distances, the ISNR is fairly constant around 100:1.   

Figure 3. DP-CF prototype detection images of test targets at 1m (A) and 5m (B); Pd / Pfa versus distance (C); target / background 
score values versus distance (D); and target ISNR versus distance (E) for HME-1. 

Td and detector latency was also assessed during this portion of the experimentation.  The Spectral Kitchen software 
provides an indication of the detection frame rate achieved.  The detection frame rate fluctuated slightly over time, but 
averaged around 12 detection fps.  The detector latency fluctuated between 1.5s and 2.0s. 

3.2 Sensitivity (LOD) 

Figure 4 shows a representative digital photograph (Figure 4A) and HME-1 score imagery from 254μg/cm2 (Figure 4B), 
1,091μg/cm2 (Figure 4C) and 1,976μg/cm2 (Figure 4D) coupon samples, respectively, captured using the DP-CF 
prototype sensor.  LOD computation was performed based on the linear portion of the calibration curve (Figure 4E). 
HME-1 LOD based on AUROC was estimated to be 135 μg/cm2. 

Selectivity (Powder Discrimination) 
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Figure 4. Limit-of-detection (LOD) results during prototype testing: Digital photograph of all LOD samples (A); DP-CF score images 
of 254µg/cm2 (B), 1091µg/cm2 (C) and 1,976µg/cm2 (D); and calibration curve used to estimate LOD (E). 

 
3.3 Selectivity (Powder Discrimination) 

Figure 5A shows a representative digital photograph of one of the 103 powder samples (i.e., cane sugar sample (left) and 
a reflective white patch (right) for white balancing).  Figure 5B and 5B’ show SWIR imagery captured of the cane sugar 
and white patch sample with the DP-CF prototype through the T1 and T2 channels, respectively, for a variety of voltage 
settings.  Figures 5C and 5C’ show example SWIR spectra associated with the T1 and T2 channels, respectively, as 
measured by a Fourier Transform Infrared (FTIR) spectrometer.  Figures 5D and 5D’ show “signature images” for the 
T1 and T2 channels, respectively, associated with all 103 powder samples where each square area within the image is a 
31 x 31 pixel image with normalized response for each unique voltage setting.  Qualitatively, the unique “signature 
image” that each powder demonstrates the inherent specificity associated with the underlying DP-CF technology. 

 
Figure 5. Sensor selectivity testing: Digital photograph of cane sugar and a white reflector (A); SWIR images at various voltages for 
T1 (B) and T2 (B’); Representative SWIR spectra associated with T1 (C) and T2 (C’); and composite “signature images of all 103 
powders for T1 (D) and T2 (D’). 

Figure 6 shows a hierarchical clustering dendrogram analysis result generated from the “signature images”.  In this 
analysis, each normalized response from the 31 x 31 voltage settings is treated as a point in a 961 point spectral vector.  
Each of these spectral vectors was then fed into KNN and SMV algorithms using a leave-one-out test in order to assess 
the accuracy of classifying each powder as either edible or non-edible.  The KNN produced a classification accuracy of 
84.5% while the SVM analysis resulted in an accuracy of 82.5%.  The spectroscopic basis for this result is likely closely 
tied to whether or not the material in question contains certain organic compound group functionalities that are 
assessable in the SWIR spectral range.  Many organic chemical compounds are readily assessable in the SWIR spectral 
range while most inorganics are not. 
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Figure 6. Hierarchical clustering dendrogram analysis of “signature images” associated with 103 powders classified as either edible or 
non-edible. 

 
3.4 “Real-World” Real-Time Moving Target Detection Examples 

Figure 7 shows results from recent “real-world” testing of the DP CF prototype.  Figure 7A shows a digital photograph 
of a plastic bag containing bulk amounts of HME-1 attached to a small drone.  Figures 7B-D show select time-sequenced 
HME-1 detection imagery generated by the DP-CF prototype of the drone carrying HME-1 around the tree tops 
approximately 30m from the sensor.  Figure 7E shows a digital photograph of a backpack containing HME-1 residue.  
Figures 7F-H show select time-sequenced detection imagery generated by the DP-CF prototype of the backpack being 
picked up and carried away by a person.  Figure 7F and 7G also show stationary depositions of HME-1 applied to a car 
door also in the scene.  This result demonstrates the ability to capture residue-level detection imagery of threat target 
materials that are both stationary and moving in a common scene.  In each case, the sensor was trained to detect HME-1 
using the Conformal Filter Training Software.  Real-time, continuous detections at a frame rates up to 16 detection fps 
were achieved using Spectral Kitchen. 
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Figure 7. Digital photographs of a drone carrying a small bag of HME-1 (A) and a backpack containing HME-1 (E) and a series of 
detection images from HME-1 detection video of the drone flying (B-D) and the backpack being picked up and carried away by a 
person (F-H) generated using the DP-CF prototype. 

 

4. CONCLUSIONS 

CISS has successfully designed, built, and conducted preliminary testing of a prototype DP-CF sensor to establish the 
feasibility of Conformal Imaging for real-time, real-world, moving target applications.  Preliminary test results 
demonstrate the potential for DP-CF as an autonomous, multi-material, real-time standoff threat detection device.  
Further, DP-CF addresses many shortcomings of current generation systems and offers improvements in operational 
agility and detection performance, while tending to sensor weight, form factor and cost needs.  DP-CF has the ability to 
conform to a variety of explosive, narcotic and chemical threat detection applications across numerous market segments.  
DP-CF may be configured to be portable, robot-mounted or standalone - each providing added safety to operators and 
equipment by enabling operation at standoff distances.  
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