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ABSTRACT

Convolutional Neural Network (CNN) based image representations
have achieved high performance in image retrieval tasks. However,
traditional CNN based global representations either provide high-
dimensional features, which incurs large memory consumption and
computing cost, or inadequately capture discriminative information
in images, which degenerates the functionality of CNN features. To
address those issues, we propose a two-stage partial mean pooling
(PMP) approach to construct compact and discriminative global fea-
ture representations. The proposed PMP is meant to tackle the limits
of traditional max pooling and mean (or average) pooling. By inject-
ing the PMP pooling strategy into the CNN based patch-level mid-
level feature extraction and representation, we have significantly im-
proved the state-of-the-art retrieval performance over several com-
mon benchmark datasets.

Index Terms— image representation, image retrieval, convolu-
tional neural network, feature pooling, compact descriptor

1. INTRODUCTION

Image retrieval has attracted extensive attentions in both academia
and industry over the last decade. Feature representation is a core
factor influencing both accuracy and efficiency in image retrieval
tasks. Traditionally, hand-crafted local features such as SIFT [1] and
SURF [2] are aggregated to a global representation by methods such
as Bag-of-Words (BoW) [3], Vector of Locally Aggregated Descrip-
tors (VLAD) [4] and Fisher Vector (FV) [5]. In recent years, with the
rapid development of deep learning, the features extracted from pre-
trained Convolutional Neural Network (CNN) models [6, 7, 8] have
achieved higher performance and flexibility than traditional hand-
crafted aggregated descriptors in typical image retrieval tasks (e.g.,
scene retrieval [9], landmark recognition [10], etc).

Generally speaking, the CNN based image representations can
be divided into two types. The first type presents whole images to
a pre-trained CNN model and get global representations. A simple
approach [11] is to extract high level features from fully connected
layers such as fc6/fc7 in AlexNet [6] or CaffeNet [7]. However the
raw high dimensional CNN features are much less efficient due to
time consuming similarity distance computing. Recent work [11]
has applied Principal Component Analysis (PCA) [12] to reduce fea-
ture dimension further. Although PCA can transform the features to
a low-dimensional representation, the transformation matrix is very
large , thereby incurring a time-consuming reduction process. Addi-
tionally, if convolutional or pooling features are treated as common
vectors, the property that each convolutional or pooling feature map
is composed by position related responses is ignored, while feature
pooling can handle such problem. Therefore, feature pooling based

middle layer representations are considered. Babenko et al. [13] pro-
posed sum pooling to reduce the dimension of the last convolutional
or pooling layer features and achieved performance improvement.
However, image retrieval tasks usually incur a complex scene, in-
volving multiple scales, cluttered background, as well as multiple
subjects, which renders it unsuitable or less optimal for the global
representations of a whole image to capture necessary semantic in-
formation in retrieval tasks.

To deal with the weakness of whole image based global rep-
resentations, the second type of methods extracts CNN features of
image patches from original images and aggregates them into global
representations. For example, Gong et al. [14] have proposed a
MOP-CNN scheme, which aggregates deep features of sliding win-
dows of different scales using VLAD. However, the VLAD method
is limited by dimension curse since the length of global features
are C times of patch-level features, where C is the vocabulary size.
MOP-CNN uses PCA to reduce feature dimension which still faces
the disadvantages of PCA dimension reduction as mentioned above.
Some other works [15, 16] prefer simple approaches such as max
pooling or mean pooling (also known as “average pooling”) to get
compact global image representations. Unfortunately, max pooling
is easily affected by extreme responses while mean pooling may
incur background distractors, thereby degenerating meaningful re-
sponses.

To address the drawbacks of previous approaches, we propose an
effective and efficient two-stage partial mean pooling (PMP) strategy
and embed PMP into an advanced feature extraction framework. The
proposed PMP attempts to alleviate the disadvantages of both max
pooling and mean pooling. In feature extraction, PMP is applied
in two stages: 1. intra-patch pooling to capture the discriminative
responses from convolutional feature maps; 2. inter-patch pooling
to aggregate patch-level features into compact global representation.
Extensive evaluation shows that the proposed PMP is superior to
max pooling and mean pooling. Meanwhile, the proposed feature
extraction framework significantly improves the state-of-the-art re-
trieval accuracy on several benchmark datasets, with a fairly short
feature dimension.

The rest of the paper is organized as follows. In Section 2, we
introduce the intra-patch and inter-patch pooling strategy, as well as
the feature extraction framework. Extensive experiment results and
comparison analysis are presented in Section 3. Finally, we conclude
this paper in Section 4.

2. PROPOSED APPROACH

In this section, the proposed PMP based feature extraction frame-
work (See Fig.1) is described in detail. Our framework includes
three main stages: patch detection, mid-level feature extraction and



Fig. 1. Overview of the proposed feature extraction framework. The pool5, fc6 and fc7 layers are indicated for CaffeNet. For VGGNet, the
network is deeper but remains similar structure.

two-stage partial mean pooling.

2.1. Patch Detection

As aforementioned, presenting whole images to a pre-trained net-
work can hardly deal with the problems of multiple scales, noisy
background and abundant subjects. Inspired by recent successful ob-
ject detection approach using R-CNN [17], we apply object proposal
algorithms (e.g., BING [18], Selective Search [19], Edge Boxes [20]
and etc.) to detect regions with high objectness followed by region
based feature extraction. In this way, the interference effects of back-
ground and other distracting objects can be reduced at the patch
level. As detected patches are those regions with high objectness
and CNN features are good at describing the semantic information
of objects [21], the CNN mid-level features will be extracted for each
patch and then aggregated to form a global representation.

As analyzed in [22], among most recent object proposal algo-
rithms, BING is with the lowest computation complexity (the whole
detection process only takes∼10ms in a single thread over a normal
PC with 2.6GHz CPU). Towards high efficient feature extraction, we
adopt BING as the patch detection algorithm.

It is worthy to mention that MOP-CNN [14] has proposed to
handle scale variance by sliding windows with different scales.
However, since the patches are greedily detected at pre-determined
scales and sliding steps, there is no guarantee that those patches can
capture meaningful objects in appropriate sizes. For example, the
parts of two distinct objects may be covered in a single image patch,
which yields inferior CNN features. Thus our work does not prefer
MOP-CNN.

2.2. Mid-level Feature Extraction

As illustrated in Fig.1, given a pre-trained CNN model, we extract
the last convolutional/pooling feature maps for each image patch as
mid-level feature. Specifically, the pool5 layer features from Caf-
feNet [7] and VGGNet (16 layers) [8] are considered in our work.
We propose to sort the responses of pool5 layer from CaffeNet or
VGGNet in a descending order within each feature map. As detailed
below, our experiment study has shown that the sorted features pro-
vide better description than raw features.

Intuitively, the sorted mid-level features avoid the explicit hard
coding of location information and thus handle position variance bet-
ter than raw features. Sorting can gather higher responses for mean-
ingful objects at different locations, so that the similarity distance

Layer Dimension mAP
fc6 4096 75.3
fc7 4096 75.7

pool5 9216 71.6
pool5 (sorted) 9216 80.4

Table 1. Retrieval performance of features extracted from different
layers of CaffeNet over the Holidays dataset. The sorted pool5 layer
features have yielded much better retrieval performance.

computing is much less affected by object location variance. For ex-
ample, each of 256 feature maps in the pool5 layer in CaffeNet [7]
is in the form of a 6×6 matrix, of which each matrix element actu-
ally codes information of a distinct position. To capture the structure
information of pool5 layer, we could successively concatenate the re-
sponses of 36 elements, while the position invariance would not be
satisfied. Thus, our mid-level feature extraction sorts the responses
to make the feature less sensitive to position variance.

We have empirically validated that the mid-level pooling fea-
tures excluding the explicit injection of position information outper-
form the high-level fully connected features. Table. 1 compares
the retrieval performances of the sorted pool5 features and other fea-
tures on Holidays [9] over CaffeNet. From Table. 1, the sorted pool5
features work better than the original pool5 features, and even out-
perform the features of higher layers like fc6 and fc7.

In addition, compared to the memory and time consuming fully
connected feature, the use of convolutional or pooling layer can sig-
nificantly reduce the memory and computation cost because fewer
large matrix multiplications are involved in feature extraction.

However, the dimension of sorted mid-level features are still too
high for retrieval. Hence, we introduce the two-stage partial mean
pooling to construct discriminative and compact features in the fol-
lowing.

2.3. Two-stage Partial Mean Pooling

The two stage partial mean pooling (PMP) is then applied to the
patch-level features for generating compact representations.

Intra-patch Pooling. Intra-patch pooling is to capture the dis-
criminative responses on the feature maps and transform the feature
to a low-dimensional representation. As a sort of quantization, the
proposed PMP based intra-patch pooling can remove the negative
effects of position variance in feature representation. We formulate
the PMP for intra-patch pooling as follows.



Fig. 2. Response visualization by the feature maps of pool5 layer
using CaffeNet. Each feature map is supposed to represent a con-
cept. A moderate number of response values may illustrate a concept
meaningful feature map.

Let X̄ = {Xi|i = 1, 2, ...,M} denote the output M feature
maps of a convolutional or pooling layer in a CNN model, and Xi =
{xi,j |j = 1, 2, ..., h × w} denote the ith feature map, where w
and h denote the height and weight of a feature map. Specifically,
M = 256 and w = h = 6 were set in the pool5 layer of CaffeNet,
and M = 512 and w = h = 7 in the pool5 layer of VGGNet. We
first sort xi,1 ∼ xi,h×w in descending order as described in Sec. 2.2
and let x

′
i,1 ∼ x

′
i,h×w denote the sorted responses. Unlike max and

mean pooling, PMP calculates the mean value of top K1 responses
to get the pooling feature Y = {yi|i = 1, 2, ...,M} from X̄ , where
yi is denoted as:

yi =
1

K1

K1∑
j=1

x
′
i,j , (1)

where K1 denotes the number of top ranked responses in each fea-
ture map.

Note that PMP may degenerate to the form of traditional max
pooling or mean pooling when K1 = 1 or h × w. PMP is meant to
seek for a trade-off between max pooling and mean pooling by con-
sidering the largest K1 responses, in which, by appropriately setting
K1 value, better pooling results of feature maps can be expected. As
shown in Fig.2, when K1 is set to an appropriate value, say,∼20% of
h×w, the pooling result of PMP shows much better delineation of a
meaningful pattern (“donkey”, “leaf”, etc.). By contrary, max pool-
ing tends to capture noisy strong response values when the majority
of responses are mild, while mean pooling would yield a skewed
value when the meaningful responses are just from the minority.

Inter-patch Pooling. In inter-patch pooling stage, the features
of different patches are aggregated to form a global representation.
Rather than max or mean pooling, PMP is applied to aggregate the
features of different patches as well. Fig.3 illustrates different pool-
ing effects of max, mean and PMP methods. Note that we do not
apply the typical aggregation approaches such as VLAD and FV as
they incur high-dimensional representations. Actually, recent aggre-
gation work has preferred simple but effective pooling [15, 16]. Let
N denote the number of patches and Ȳ denote the features of all
patches after intra-patch pooling:

Ȳ =

 y1,1 . . . y1,M
...

. . .
...

yN,1 · · · yN,M

 (2)

where a row denotes the feature of each patch Y and yi,j refers to the
yj in the i-th pooling feature Y . For each column, y1,j ∼ yN,j are
sorted to generate the list of y

′
1,j ∼ y

′
N,j in descending order and

PMP is applied to calculate the inter-patch pooling result as Z =
{zi|i = 1, 2, ...,M}, and zi is denoted as:

Fig. 3. A toy example of inter-patch pooling to compare max, mean
and partial mean pooling (note the top 50 patches are shown). Each
block indicates a response value. The block colors (from blue to red)
indicate different response strength (from weak to strong). The pro-
posed PMP provides more discriminative pooling results for “ship”
object. Compared with mean pooling, PMP discards noisy back-
ground patches. Compared with max pooling, PMP can better han-
dle scale and position variance by averaging the features of mean-
ingful patches.

zi =
1

K2

K2∑
j=1

y
′
j,i, (3)

where K2 denotes the number of interest patches in each column.
To further improve the discriminative power, as shown in Fig.1,

additional L2-normalization and PCA-whitening is subsequently ap-
plied to Z. As Z is with very low dimension, the overhead of PCA
transformation can be ignored.

3. EXPERIMENTS

Datasets. We evaluate the proposed approach on three benchmark
datasets: INRIA Holidays (Holidays) [9], University of Kentucky
Benchmark (UKBench) [24] and Oxford building dataset (Ox-
ford5K) [10]. Holidays dataset contains 1491 images, which can be
divided into 500 query images and 991 reference images. The re-
trieval performance is measured by mean average precision (mAP).
UKBench dataset consists of 2550 groups, each of which contains
4 pictures of the same object captured from different viewpoints.
Each image is treated as query once and mean precision at 4 is used
for evaluation. Oxford5K dataset contains 5063 building images.
In total 55 query images of 11 different buildings are applied and
the performance is evaluated by mAP. An external subset of 10,000
images from the ImagetNet dataset [25] is used to train PCA param-
eters. To measure the feature similarity, cosine distance is applied in
the subsequent experiments.

Impact of Parameters. Referring to Equ.1, 2 and 3, we study
the impact of three parameters: parameter K1 in intra-patch pool-
ing, parameter K2 in inter-patch pooling and the number N of se-
lected patches. Towards comprehensive performance evaluation, we
extend the parameters study to two typical networks: CaffeNet and
VGGNet.

Instead of exhaustively enumerating the complete parameter
space, we study the impact of each parameter separately. We first
analyze the influence of K1 over Holidays dataset. For simplicity,



Method Dimension Holidays UKBench Oxford5K
SIFT + TE + DA [23] 1024 72.0 3.51 56.0

Neural Codes [11] 4096 79.3 - -
MOP-CNN + PCA [14] 512 78.3 - -

CNN + SPoC [13] 256 80.2 3.65 58.9
CNN + DPS + Max Pooling [15] 4096 81.0 3.67 56.0

Intra-patch Pooling (CaffeNet) + VLAD (C = 64) 16384 82.3 3.43 43.1
Intra-patch Pooling (CaffeNet) + FV (C = 64) 16384 84.3 3.44 44.5

Two-stage Pooling (CaffeNet, without PCA-whitening) 256 84.5 3.70 48.2
Two-stage Pooling (CaffeNet, with PCA-whitening) 256 85.1 3.76 56.8

Two-stage Pooling (VGGNet, without PCA-whitening) 512 86.0 3.80 57.3
Two-stage Pooling (VGGNet, with PCA-whitening) 512 86.6 3.80 64.0

Table 2. Comparisons with state-of-the-art global image representations. C denotes the vocabulary size.

Fig. 4. Performance influence of PMP parameter K1 on the Holidays
dataset. (a) the results via CaffeNet, (b) the results via VGGNet.

Fig. 5. Performance influence of PMP parameters N and K2 on
the Holidays dataset. (a) the results via CaffeNet, (b) the results via
VGGNet.

we consider the case of the whole image as a single patch to explore
the K1 impact of intra-patch pooling, in which N = K2 = 1. Note
that PMP degrades to max pooling when K1 = 1 and degrades to
mean pooling when K1 = w × h. As shown in Fig.4, the best
retrieval performance is achieved on Holidays when K1 = 7 on
CaffeNet and K1 = 11 on VGGNet, which is much better than the
results of max pooling and mean pooling.

To further study the influence of N and K2, we fix K1 = 7
on CaffeNet and K1 = 11 on VGGNet. We empirically set N =
64, 128, 256 and K2 = 1, 5 ∼ 50 (step size = 5), N . As shown
in Fig.5, PMP demonstrates its superiority. Thus we empirically set
N = 128, K1 = 7, K2 = 10 for CaffeNet and N = 128, K1 =
11, K2 = 5 for VGGNet in the following performance comparison
experiments over more benchmark datasets.

Performance Comparison. We setup several baselines for ex-
tensive performance comparison, including: (1) SIFT+TE+DA [23]:
the state-of-the-art SIFT based compact aggregated descriptors; (2)
Neural Codes [11]: extracting raw fully-connected features from a

pre-trained CNN model over the whole image; (3) MOP-CNN +
PCA [14]: aggregating fully-connected features of CNN from multi-
scale patches with VLAD, and performing PCA to reduce feature di-
mension; (4) CNN + SPoC [13]: sum pooling and whitening of the
image level global convolutional features; (5) CNN + DPS + Max
Pooling [15]: selecting patches with a statistical model and aggre-
gating fully-connected features of CNN from selected patches with
max pooling; (6) Intra-patch Pooling + VLAD: performing the pro-
posed PMP for intra-patch pooling and aggregating pooling features
with VLAD approach [4]; (7) Intra-patch Pooling + FV: perform-
ing proposed PMP for intra-patch pooling and aggregating pooling
features with FV [5]; (8) Two-stage Pooling: injecting the proposed
PMP into the two-stage pooling feature extraction pipeline. Except
the Baseline (5) is performed via VGGNet, other CNN baselines are
carried out via CaffeNet or similar structure.

Table 2 lists the comparison results on Holidays, UKBench and
Oxford5K. Our approach significantly outperforms state-of-the-art
SIFT based compact aggregated descriptors (SIFT+TE+DA [23]).
Like other state-of-the-art CNN schemes, PCA-whitening has im-
proved the performance of our proposed approach. The superior
performance of our proposed two stage PMP strategy has demon-
strated its strength in eliminating the negative effects of scale, trans-
lation, cluttered background, etc. Baselines (6) and (7) replace our
inter-patch pooling approach with the typical aggregation methods
VLAD and FV. However, our results are superior to (6) and (7) in
both accuracy and compactness, which indicates the advantage of the
inter-patch PMP in aggregation. Note that the VGGNet [8] features
benefit from a deeper network structure and its derived strong gener-
alization and thereby outperform the CaffeNet [7] features. Overall,
compared with other baselines, the proposed approach yields better
retrieval performance at a very short feature dimension.

4. CONCLUSION

We have proposed a two-stage partial mean pooling strategy towards
an advanced CNN feature extraction framework. The proposed com-
pact and discriminative image representation outperforms state-of-
the-art methods. How to incorporate low-level invariant features into
this feature extraction framework (i.e., the effective combination of
CNN and SIFT features) will be included in our future work.
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